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Copolymers bridging dissimilar domains are known to strengthen polymeric interfaces and to promote 
adhesion. A related effect gives rise to thermotropic elastomers formed by ABA triblock copolymers. 
Mesophases of ABA copolymers form physical networks due to bridging of different, glassy, A domains by B 
blocks. Shear alignment of the ABA melt produces “single crystal” mesonetworks with lamellar, cylindrical 
or micellar structure. The swelling of such mesonetworks by a selective solvent produces mesogels which 
differ from conventional gels because of their anisotropy and the high functionality of the cross links. 
Theoretical considerations concerning the bridging fraction, the swelling equilibrium and other issues are 
briefly reviewed for three types of systems: (1) Mesogels consisting of neutral, flexible ABA triblock 
copolymers. (2) Mesogels formed by ABA triblocks with a polyelectrolyte B block. (3) Mesogels produced by 
ABA triblock copolymers with a main chain liquid crystalline B block. 

KEY WORDS Mesogels; triblock copolymers; physical networks; bridging; swelling; polyelectrolytes; 
liquid crystalline polymers; adhesion. 

1. INTRODUCTION 

Bridging by polymer chains promotes adhesion with macromolecular materials. 
Compatilizers, such as block copolymers and random copolymers, are capable of 
strengthening interfaces in phase-separated polymer blends.’ Grafted chains can 
enhance the adhesion between a solid and an elastomer.2 These effects are attributed to 
interdigitation between the bridging chains and the polymeric material. The scope of 
bridging effects is actually wider. Another important manifestation is the formation of 
thermotropic elastomers from ABA triblock  copolymer^.^ Thermotropic elastomers 
are physical networks formed in segregated ABA samples because some of the B blocks 
bridge different A domains. The A domains are typically glassy, thus making the 
physical bridges long lived. Note that the ABA triblock copolymers are capable of 
strengthening both AB interfaces and AA interfaces while the effectiveness of the AB 
diblocks is limited to AB interfaces. The study of bridging chains at AA interfaces is 
especially convenient in model systems based on thermotropic elastomers. This article 
is devoted to an elementary review of the theory of these model systems and the 
macroscopic signatures of the bridging  chain^.^-'^ The experimental route’ to these 
model systems provides a good description of their essential features. One begins with a 
melt of ABA triblock copolymers. The temperature is then lowered below the threshold 

*One of a Collection of papers honoring Jacques Schultz, the recipient in February 1995 of T h e  Adhesion 
Society Award for  Excellence in Adhesion Science, Sponsored by 3 M .  

1 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
4
0
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



2 A. HALPERIN 

of microphase separation. Thus, depending on the relative size of the blocks, one 
obtains lamellar, cylindrical or micellar mesophases. At this stage the melt is subjected 
to a shear treatment in order to align the mesophase so as to obtain a “single crystal” 
sample. The aligned mesophase is then quenched to below the glass transition 
temperature of the A domains. The result of this procedure is a physical network which 
retains the structure of the parent mesophase, thus we refer to it as a mesonetwork. Our 
discussion is mostly concerned with the properties of the mesogels obtained by swelling 
the mesonetworks by a selective solvent for the B chains, i.e., a good solvent for the B 
blocks but a precpitant for the A blocks. Depending on the nature of the original 
mesophase one may obtain lammelar, cylindrical or micellar mesogels. The aligned 
lammelar mesogel consists of parallel glassy sheets of A polymer bridged by B chains. 
In the cylindrical mesogel the glassy A domains are cylindrical. Clearly, no alignment is 
necessary in the case of micellar mesogels where the glassy A domains are spherical. 
The study of mesogels allows access to a rich phenomenology traceable to the bridging 
chains; in particular, the swelling equilibrium, the deformation behaviour and their 
dependence on the solvent quality. As we shall discuss, this repertoire is even broader if 
one considers also polyelectrolyte and liquid crystalline B chains. 

The interest in physical mesonetworks and mesogels is actually wider. As networks, 
these are distinctive because of their very high functionality and because of the strong 
anisotropy of the lamellar and cylindrical systems. This, in turn, leads to a distinctive 
anisotropic swelling behaviour of the corresponding mesogels. Furthermore, gel 
formation by ABA triblolck copolymers is probably t‘he simplest example of physcal 
gelation and is, thus, an attractive model system from this perspective. The formation of 
mesonetworks is also a distinctive feature of triblock and multiblock copolymers. It is 
absent in diblock copolymers which otherwise exhibit essentially the same phase 
behaviour. This last point is of obvious relevance to polymer science where the study of 
block copolymers is of great current interest.” It is also of interest to surface sciencc 
because of the close resemblance between diblock copolymers and monomeric am- 
phiphiles. From this point of view the gel formation by ABA triblock copolymers is a 
distinctive feature of copolymeric surfactants. As a final point, these macroscopic 
systems are of interest because they incorporate grafted, or tethered, chains, i.e., chains 
attached to a surface by their head groups. This, too, is a topic attracting considerable 
current activity.I6 Mesogels allow for the study of tethered chains in macroscopic 
samples rather than in interfacial regions, as is the case in most other model systems. 

The mesonetworks/mesogels considered in the following are formed by symmetric 
ABA triblock copolymers. The polymerisation degree of the two A blocks are identical 
and denoted by N,.  The nature of the mesophases is determined by the ratio 
CI = N,/2 N ,  where N ,  is the polymerisation degree of the B blocks. Both N ,  and N ,  are 
much larger than unity. When CI x 1 the stable mesophase is lammelar. Cylindrial and 
micellar phases become dominant as c1 decreases. As indicated, the A blocks are flexible, 
neutral, isotropic chains with glass transition temperature, T,(A), above room tempera- 
ture. The discussion concerns three families of systems, differing in the nature of the B 
blocks. In the simplest, reference, system and B blocks are flexible isotropic chains with 
T,(B) below room temperature, i.e., the B domains are rubbery at the temperature 
range of interest. In the second system the B blocks are weak polyelectrolytes, i.e., the B 
chains carry ionizable groups separated by m monomers such that N ,  >> m >> 1. In the 
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ON BRIDGING AND MESOGELS 3 

discussion it is assumed that the polyelectrolyte B blocks dissociate only in solvents of 
high dielectric constants such as water. Thus, in the melt state the B blocks are not 
dissociated and their behaviour is essentially indistinguishable from that of neutral 
flexible chains. As a result, the polyelectrolyte nature of the blocks will affect mostly the 
behaviour of the swollen mesogels while having little effect on the mesonetworks. In the 
third system the B blocks are main chain liquid crystalline polymer (LCP) blocks 
consisting of monomeric nematogenes joined by short, flexible spacer chains. For this 
system the discussion is confined to the case where the nematic-isotropic transition 
takes place above T&A) but well into the microphase separated regime. Accordingly, 
the onset of nematic order is expected to affect both the properties of the mesonetwork 
and of the mesogel. The mesogels are obtained from the aligned mesonetworks by 
swelling with a selective solvent for the B blocks. In the second case, the selective 
solvent is assumed to be of high dielectric constant, e.g., water. Nematic selective 
solvents are necessary to obtain the mesogels when the B blocks are LCP. 

A complete description of the theory of mesogels is beyond the scope of this article. 
Instead, we present the meanfield free energies of certain types of mesogels and briefly 
discuss the necessary elaborations of this simple description. In other cases the 
discussion is entirely qualitative. A more complete analysis may be found in the quoted 
references. The equilibrium fraction of B chains is discussed in section I1 both for 
neutral flexible B blocks and for main chain LCP B blocks. Section 111 deals primarily 
with the swelling equilibrium of simple mesogels. Polyelectrolyte mesogels are dis- 
cussed in section IV and the qualitative aspects of liquid crystalline mesogels are 
summarised in section V. Experimental studies and simulations are briefly mentioned 
in the final section. 

11. THE EQUILIBRIUM BRIDGING FRACTION 

One can envision a number of possible states of an ABA triblock in a mesonetwork. 
When both A blocks are embedded in the same a domain the B block forms a loop. A 
bridge occurs when the two A blocks inhabit different A domains. In principle, one 
should also allow for “dangling ends”, i.e., triblocks with only one of the A blocks 
embedded in an A domain while the other is immersed in the B melt. However, our 
discussion focuses on the strong segregation limit where the AB interface is sharp and 
the associated surface free energy is high. In this limit the dangling ends population may 
be neglected. What is the fraction, qeq, of bridging B chains in equilibrium? qeq is 
determined by two  factor^:^-^*"-'^ The difference in the elastic free energy of loops 
and bridges and the mixing entropy of the two species. The free energies of loops and 
bridges differ because the configurational entropy of the bridges is lower. This can be 
understood as follows: The configurational entropy of the loops can be approximated, 
up to a In N ,  term, as that of two grafted chains obtained by cutting the loop into two 
equal parts. Each of the two halves has a free, unconstrained end which may be found 
anywhere within the layer. In marked contrast, each of the two ends of a bridging chain 
is constrained to a different AB boundary. 

To quantify this argument it is necessary to resort to a SCF theory developed by 
Semenov.” In the otherwise powerful Alexander mode1’6.’8 the two states are 
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4 A. HALPERIN 

indistinguishable because all chains are assumed to be uniformly stretched. The details 
of the analysis are beyond the scope of our discussion. Nevertheless, insight may be 
gained by comparing an early but faulty approach of Zhulina and Halperins-'~' ' with 
a recent, more accurate analysis of Matsen.13 In the first approach, the bridging in an 
ABA lamella is considered analogous to the adsorption of a brush onto a surface which 
is attractive to the free ends. The midpoints correspond to the free ends in the 
adsorption problem, i.e., each B block is cut into two equal parts. Within this picture, 
the lamellar midplane corresponds to the adsorbing surface. Each chain is allocated an 
area of X and the layer thickness is thus NBa3/X where a is the characteristic size of a 
monomer. The SCF analysis of the adsorbing b r ~ s h ' ~ * ~ ~  suggests that the B layer 
consists of three regions. A central region, of thickness 2 d ,  comprised solely of 
uniformly-stretched bridging chains, and two boundary layers, of thickness h, incor- 
porating both bridges and loops. In the bounary layers, the chain stretching varies with 
the distance from the surface, x. The average elastic free energy per chain at the 
boundary layer is 

F b / k T = ( l  - q ) ( 3 / 2 a 2 )  d ? g ( q )  E n ( x , q ) d x  + 4 ( 3 / 2 a 2 )  E b ( x , h ) d x .  ( I )  loh c .c 
En(x,  q) is proportional to the local tension, k T(3 /2a2)E, ,  in an ideal, non-bridging 
Gaussian chain whose free end is located at  height q and g(q) is the height distribution 
of the free ends. Eb(x,  h)  is proportional to the local tension in a Gaussian segment of a 
bridging chain whose end is always located at height h. The elastic free energy per chain 
in the central region is 

F , / k T =  3 4 ( H ,  - h)'/[2(N - " ) a 2 ]  ( 2 )  

where 2 N  = N ,  and N' is the number of monomers in the boundary layer. H ,  = N a 3 / X  
is the thickness of the B half layer. By minimising F ,  + F,, subject to the appropriate 
constraints, one obtains the average elastic free energy per chain for a given q, F ,  (4). In 
the limit of small q, F,,(q)/k T =  (F",/k T )  [ l  + ( 2 q / ~ ) ~ ]  where F,",/k T x  H:/Na4 is the 
elastic free energy per chain within the Alexander model, assuming uniform stretching. 
The equilibrium value of q is found by minimising 

( 3 )  Fchain/k T =  F,,(q)/k T +  4 In 4 + ( 1  - q)ln(l - 4) .  

For small q this leads to 4(F',",/k T ) ( 2 ~ ) ~ q ~  + In q = 0 which may be solved numerically 
to yield the approximate scaling form q,, x (F,",/k T)-O with x 1/4. Altogether 

q e q z N 1 / 4 a l / 2 / H : / 2  - x 1 / 2 N - 1 / 4  B '  (4) 

This result is actually asymptotically valid in the limit of very strong segregations, when 
C is very small. 

The approach outlined above is faulty in two respects. One, bridging is due only to 
chains with midpoints at the midplane. The contribution of midpoints located else- 
where is neglected. Two, when this constraint is relaxed, it is important to use a more 
accurate expression for the mixing entropy.I3 In particular, to introduce a local mixing 
entropy density allowing for bridging due to midpoints off the midplane. The probabil- 
ity offinding a midpoint at altitude q is g(q). The corresponding probability for a bridge 
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ON BRIDGING AND MESOGELS 5 

is thus P,(9) - g(9)g(2H0 - q) while that of a loop is P J q )  - g2(y). Altogether, the 
normalised probability densities are 

PB(47) = g ( v ) g ( 2 H ,  - rl)/Es(a) + 9 ( 2 4  - 911 
Pdrl) = g 2 ( r ) / [ s ( v )  + d2HO - dl. 

(5 )  

(6) 

The global mixing entropy is obtained by integration of the local mixing entropy as 
expressed in terms of P,(q) and P,(q). Because of this modification it is also necessary to 
consider the variation of the free energy functional with respect to g(q), thus allowing 
for the different elastic penalties associated with the various bridging configurations. 
The three distict lammelar zones no longer appear within this analysis. Rather, the 
midpoints are distributed throughout the B layer. In the present context, the main 
conclusion of the Matsen analysis is that q,, x 0.4 for realistic systems. It is not, 
however, clear whether this qeq is actually attained because of kinetic reasons and 
because of the effect of shear alignment. 

Our discussion thus far has been confined to the simplest possible system, with 
flexible, neutral B blocks which are nonmesogenic, i.e., incapable of forming liquid 
crystalline phases. In the following we consider mesonetworks with mesogenic, ther- 
motropic, main chain LCP B blocks. In particular, the discussion is concerned with the 
effect of the onset of nematic order on qe,. When the temperature of the nematic- 
isotropic transition, TN,, is lower than T,(A) no effect is possible since the vitrification of 
the A domains prevents equilibration. In the oppositecase, TN, > T,(A), q,, is expected 
to increase significantly. This enhancement of q,, is due to the weakening of the 
Gaussian elasticity of the LCP in a nematic medium. Before we discuss this effect, it is 
necessary to present a brief introduction to the configurational statistics of main chain 
LcPs.2'*22 

The chemical structure is smeared out and the chain is pictured as a line of constant 
length, L,  endowed with a rigidiy E.  E defines a persistence length, c, for which the elastic 
energy, E / [ ,  is comparable with the thermal energy, k T,  i.e., [ x E/k T. For long chains, 
L>> c, the large scale configurational behaviour is that of a random walk of L/[ steps of 
length c. The chain span is, thus, R i  x (L/[)c2 = L[. In a nematicenvironment the chain 
experiences a molecular field due to the nematic order. This brings about a decrease in 
the step length, a feature which is only possible within the framework of the worm-like 
chain model. A unit length of the chain is assumed to experience a Maier-Saupe 
potential of the form V ( 0 )  = a,SP,(cos e) where S is the nematic order parameter, 8 is 
the angle between the chain element and the director n and P2(cos8) is a Legendre 
polynomial of the second order. a, is a phenomenological coupling constant which, 
together with 8, specifies the behaviour of the chain in a nematic environment. Two new 
length scales emerge: (i) The deflection length, 1, specifies the scale on which the nematic 
energy a,SA is comparable with the elastic energy &/A, that is, A x (&/a,S)'i2. (ii) The 
short length, I, is defined by comparing the nematic energy a,S1 with the thermal energy 
k T, that is, 1 x k T/a,S. i replaces the persistence length, ( > A, in characterising the 
decay of angular correlations within the chain. Because of the nematic field the LCP is, 
in effect, confined to a virtual conical capillary with reflecting walls. Since the chain is 
deflected inwards upon each encounter with the walls, the angular correlations decay 

A main chain LCP in an isotropic medium may be described as a worm-like 
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6 A. HALPERIN 

faster. When the chain is not too long, it is fully extended along the n direction, i.e., 
RiO M L. Its dimensions in the perpendicular direction arise from a two-dimensional 
random walk of L/1 steps of length 1 leading to R f o  x (L/1) l 2  = L1. The lateral span 
retains this form even for long chains. However, Rllo  then obtains a qualitatively 
different form. The new ingredient is hairpin defects. These are abrupt reversals in the 
trajectory of the chain. Their presence allows the chains to sample more of their 
configurational phase space. It is, thus, entropically favoured. On the other hand, the 
bend region of the hairpin is unfavourably oriented with respect to the nematic field 
and is, accordingly, energetically penalised. The overall size of the hairpin, A,, is of 
order A. The energy of a single hairpin, allowing for the elastic and for the nematic 
contributions is roughly U z &/Ah + a,SA,. Minimalisation with respect to Ah yields 
Ah M (E /U,S)”~ z A and a characteristic energy of order &/A, U ,  z ( ~ , S E ) ” ~ .  Since the 
existence of hairpins is not due to chemical structure but -to thermal exitation, their 
density obeys a Boltzman distribution: n,l/L M exp( - U,/k T) where no is the number of 
hairpins on an unperturbed LCP at equilibrium. Note that the linear density is defined in 
terms of the short length 1. This is because 1 specifies the uncertainty in the spatial 
position of the hairpins with respect to the chain end, thus, defining an effective lattice 
c o n ~ t a n t . ~ ~ . ~ ~  The hairpins give rise to a one-dimensional random walk in the direction 
of n. The number of steps is no and the average step length is Lln,. For no >> 1 the chain 
span in the direction of n is, thus, given by Ri0 M n,(L/n,)2 = L2/n, = Llexp(U,/k T )  
rather than R l l o  z L. Altogether, the LCP emerges as an ellipsoid with a major axis Rllo,  
oriented with n, which is much larger than the minor axis RLo. 

This brings us to the central point. The shape anisotropy is also reflected in the elastic 
behaviour of the LCP. The involvement of random walk components suggests a 
Gaussian elastic behaviour. For weak deformations this is indeed the case. However, 
the elasticity of the major axis is much ~ o f t e r . ’ ~ , ~ ~  Since R,lo >> RLo, the compression and 
stretching penalities, Fe,(Rll)/k T z Rio/Ri and Fe,(Rll)/k T x R i  /R:o, are much weaker 
than the corresponding penalties associated with R,. Furthermore, the elasticity of 
the major axis is typically much weaker than that of the LCP in an isotropic medium. 
Since L/n, >> [, Ri0 x L2/n, >> Rg z L[ and F,,(R, , ) /k  T x Ri/Rie is weaker than 
Fe,(R)/k T z R2/L[. The corresponding elastic free energy density, fef, is also modified. 
For flexible isotropic chains F,, = a-2(dr/dn)2, where n is the position along the chain 
trajectory, irrespective of direction. This form of f e l  has been used to obtain qeq of the 
nonmesogenic chains. However, for long main chain LCPs in the nematic state i e f ( R l , )  
is of the form fe,/k T =  (ul)-’ exp( - U,/k T)(drll/dn)2. Consequently, the factor (3 /2a2)  
in the relevant equations is replaced by (3 /2a l )  exp( - Uh/k  T). As a result,’ 
qeq - - (R,lo/Ho)1’2 - Z1’2N-1/4 exp(Ud4k T). Essentially, the bridging fraction below 
TNI is larger by exp(Uh/4k T )  because the Gaussian elasticity in this regime, which is 
due to the rearrangement of the hairpin defects, is much weaker. 

111. SIMPLE MESOGELS 

The preceeding section was devoted to mesonetworks above T,(A). In this temperature 
range neither the A nor the B domains are glassy. Consequently, the distribution of 
bridges and loops may, in principle, reach equilibrium. In the following, we consider the 
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ON BRIDGING AND MESOGELS I 

swelling of mesonetworks below T,(A). Mesogels are produced by swelling the aligned, 
single crystal mesonetwork by a selective solvent, i.e., a good solvent for the B blocks 
but a precipitant for the A chains. Because T < T,(A) the swelling does not affect the A 
domains. Their dimensions and geometry remain unchanged. In particular, there is no 
effect on the area per chain, C, the thickness of the A domain and the fraction of 
bridging chains, q. In the following, we will consider the swelling equilibrium for the 
idealised case of q = 1, i.e., when all B blocks form bridges. 

The elementary units of the swollen mesogels are “brushes” of various geometries. 
The term refers to chains which are terminally anchored, grafted, to a planar surface, to 
a cylinder or to a sphere.16 The grafting density is high so that the chains crowd each 
other, thus leading to chain stretching along the normal to the grafting surface. The 
swelling of the mesogels and of these elementary units is simply related in terms of a so 
called c* theorem.27 Thisequates the volume fraction of A monomers in the A domains 
of the mesogel to tp in the corona of the isolated unit. Thus, a swollen lamellar gel at 
equilibrium attains the dimensions corresponding to close packing of planar brushes at 
grazing contact, i.e., at c* of the lamellae. Accordingly, the theory of the swelling 
equilibrium of mesogels reduces to the theory of swollen brushes. To abbreviate the 
discussion further, we present a simplified version of this theory, incorporating Flory 
exponents. The chains are assumed to be Gaussian and the number of binary contacts 
is taken to scale as 4’. This approximation ignores the effect of correlations, thus 
leading to an overestimate of both chain elasticity and the monomer-monomer 
 interaction^.^' Nevertheless, the essential physical picture is correct. Furthermore, due 
to cancellation of errors, this approach does yield the correct dimension of the swollen 
brushes. 

The primary features of a swollen planar brush are easily obtained within the 
framework of the Alexander model.’6,’8 This Flory-type approach is based on two 
assumptions: (i) The monomer volume fraction within a layer of thickness H is 
constant, tp % N u 3 / C H .  (ii) All chains are uniformly stretched with their ends straddling 
the layer boundary at height H .  This model is actually strictly applicable to the case of a 
lamellar mesogel with q = 1. The swelling of the layer is favoured by repulsive 
monomer-monomer interactions. As H increases, tp decreases and with it the number of 
binary contacts. The swelling is arrested by the elasticity of the polymers since an 
increase in H is attained by stretching the chains. To quantify this argument, we express 
the free energy per chain of a brush immersed in a good solvent as 

( 7) 

where ti is a dimensionless excluded volume parameter. The first term allows for the 
global Gaussian penalty associated with the chain stretching. The interaction free 
energy of the chain is reflected in the second term. Minimisation with respect to H 
yields the equilibrium thickness of the layer, 

F,,,,,/kT % H 2 / N u 2  + vb2CH/u3  zz H 2 / N u 2  + v N 2 a 3 / C H  

H,,/a % N ( u ~ / C ) ” ~ .  (8) 
The Alexander model is easily generalised to spherical and cylindrical geometries. In 

thesesituations, as in the case of the planar brush, it yields the correct scaling behaviour 
for the thickness of the layer. Such is the result for the Flory exponents as well as for the 
excluded volume, “scaling” exponents. However, while the discussion of the planar, 
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8 A. HALPERIN 

q = 1, layer allows for most of the relevant physics, the treatment of the non-planar 
geometries overlooks an important issue. The problem is as follows: For both spherical 
and cylindrical brushes, the volume available to the chain increases with the radius, Y .  

Consequently, the chain crowding diminishes as r grows. Thus, one expects both 4 and 
the chain stretching to decrease as r increases. Both effects are, however, prohibited 
within the framework of the Alexander model where 4 and the chain stretching are 
assumed to be constant. A proper description of this effect, using the blob picture, has 
been developed following the pioneering work of Daoud and Cotton28 as reviewed in 
Reference 16. The following discussion, after a recent presentation of Z h ~ l i n a , ~ . ~ ~  deals 
wtih the generalisation of the Alexander model with Flory exponents. In it, the chain 
ends still straddle the exterior boundary of the brush, however 4 and the chain 
stretching are allowed to vary with r .  Focusing on the good solvent behaviour, the free 
energy per chain consists of two terms. The elastic free energy of the chain is 

F , ~ / k T = ( 3 / 2 ~ ~ ) ~ ~ ~ + " ( d ~ / d n ) d ~ z ( a R ~ - ' / C )  jRR+" 4 - 1 Y l  - ddr (9) 

The linar elastic free energy density, (dv/dn)'dn may be written as (dr /dn)dr  when the 
chains are strongly stretched in the radial direction. When 4 ( r )  is a slowly varying 
function, the increment of the total number of monomers is d n ,  z ~ - ~ 4 ( r ) r ~ - ' d r  
where d, the dimensionality of the system, is d = 1 in the planar case, d = 2 for the 
cylindrical brush and d = 3 for the spherical one. The monomer increment per chain is 
d n z ( C / R d - ' ) d n ,  where R is the radius of the grafting surface and Rd- ' /C  is the 
number of grafted chains. This leads of d r / d n  = u ~ ( R ~ - ' / C ) ~ - ~ Y ' - ~  and to the final 
expression for Fel. The interaction free energy density due to binary monomer- 
monomer interactions is L 3 u k  T b 2 ( r )  where u is the dimensionless second virial 
coefficient. The free energy density per chain is ( C / R d -  ' ) ~ - ~ u k  TcP2 and the interaction 
free energy per chain is, thus, 

The equilibrium characterstics of the brush are obtained by minimisation of 
Fchain = F,, + Fint subject to the constraint of monomer conservation, i.e., 

(C/a3Rd- ')jRR+H 4(r)rd- 'dr  = N .  (1 1) 

The minimum condition, - ( R d - 1 a / C ) ( $ r d - 1 ) - 2  + ( C / a 3 R d - ' ) ( u 4  + A ) = O ,  leads to 
the scaling form 

4(y) = u -  1 / 3 ( ~ d -  ia3-d/~)2/3(a/Y)2(d-1)/3 (12) 

He, is determined by the constraint, Eq. (1 l), leading, for H >> R ,  to 

(13) ( u a 3  - d Rd - 1 / q 1 / ( d  + 2 )  ~ 3 / ( d +  2 ) .  

The average monomer volume fraction (4) z N a 3 / H d  is 

(14) (4) z c-d/(d+2) ( a 3  - dRd - 1 / ~ ) 2 / ( d  + 1" 2 ( 1 -  d ) / ( d  + 2 ) .  
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ON BRIDGING AND MESOGELS 9 

Somewhat different forms are obtained for 0 solvents, in which u = 0 and the interaction 
term reflects ternary monomer-monomer contacts leading to a free energy density of 
the form w 4 3  where wa3 is the third virial coefficient. In this regime, the swelling is 
weaker and, thus, H e ,  is smaller while (4) is larger. 

The swelling behaviour of single crystal mesogels approaches that of simple gels as 
their dimensionality grows, i.e., along the sequence lamellar to cylindrical to micellar. 
The swelling is unidirectional in lamellar mesogels and bi-directional in cylindrical 
ones. In micellar gels, as in simple gels, the swelling is isotropic. ( 4 )  exhibits a similar 
trend, scaling, respectively, as N o ,  N ~ and N -415 where N -4’5 is the N dependence 
expected from simple gels. For comparison with polyelectrolyte gels note that different 
scaling laws characterise the equilibrium H e ,  of the different mesogels. 

A detailed discussion of the other distinctive features of the mesogels is beyond the 
scope of these article. The main characteristics, focusing on the case of lamellar 
mesogels, are as follows: (1) The extension and compression behaviour are asymmetric. 
The extension is dominated by the elasticity of the bridging chains. In marked contrast, 
the compression is opposed by the osmotic pressure due to both bridging and 
non-bridging chains. (2) The deformation of the B chains is non-affine. (3) Since the 
lamellar mesogel is not isotropic, the Young and shear moduli are not simply 
proportional to each other. (4) The extension of lamellar mesogels in a poor solvent 
exhibits a novel force law. For certain regimes the stress is independent of the strain.30 
This is the signature of a first-order phase transition involving the coexistence of a 
dense phase of weakly deformed chains and a dilute phase of strongly stretched ones. 

IV. POLYELEGTRCXYTE MESOGELS 

The behaviour of the swollen mesogels is modified when the B blocks are poly- 
electrolytes. As in the case of mesogels with neutral B blocks, the analysis is closely 
related to that of a free brush. Two extra contributions come into play when a poly- 
electrolyte brush is immersed in a solvent of high dielectric constant, thus promoting 
d i s s~c ia t ion .~~  One is the mixing entropy of the mobile counterions. The second is the 
electrostatic energy between the charged brush and the oppositely charged counter- 
ions. This last term appears only when the counterion cloud extends beyond the 
boundary of the brush, thus causing local deviations from electroneutrality. Typically, 
this contribution is important in the discussion of free, dilute micelles and cylinders or 
of sparsely grafted planar brushes. In our case, this effect may be neglected because of 
symmetry, i.e., each brush is surrounded by identical brushes, thus enforcing symmetry 
with respect to the midplane and local electroneutrality. Accordingly, the important 
term is due to the mixing entropy of the counterions. In principle, one must allow for 
the Debye-Hiickel correction, allowing for correlations between the ions and the 
corresponding decrease of their entropy. This correction is, however, small and the 
important features of the system are obtained when the countertions are considered as 
an ideal gas. The corresponding term to the free energy density is of the form pion In pion. 
Because of the local electroneutrality, the volume fraction of the ions, pion is related to 
the monomer volume fraction as pion = $(r)/rn where m is the typical distance between 
neighbouring ionic groups along the chain in monomer units. The counterion mixing 
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10 A. HALPERIN 

free energy per chain is, thus, 

F,,/k T = (E/Rd- ' a m) jRR + [ I$ (r) In I$ (r)/m] rd - d r. (15) 

As in the previous section, the equilibrium state is found by minimising Fchain subject to 
the constraint of monomer conservation, Eq. (1 1). In the present case, there is an extra 
term in the free energy per chain and Fchain = F,, + Fint + Fion. The corresponding 
minimum condition is -(Rd-1a/X)(I$rd-1)-2 + ( C / U ~ R ~ - ~ ) ( U I $  + m-'I$lnI$/m+A) 
= 0. Under good solvent conditions the interaction terms are negligible and the scaling 
form of I$ is given by (Rd-1/X)2a4(I$rd-1)-2 = m-'I$ln I$/m + 1 =I\-'. This leads to 

= A(Rd- l/Z)a'/rd-' where A = Na/H is a constant determined by Eq. (11). Fchain 
and H are obtained by minimising Fchain = F,, + Fint with respect to H .  For H >> R the 

eq result is 

H e ,  x aNm-'/' (16) 

I$ x(Rd-1/Z)a2m1/2/rd-1. (17) 

( I $ )  % ( u ~ R ~ - ~ / X ) ~ ~ / ' N ' - ~ .  (18) 

and 

As opposed to the neutral mesogel, te equilibrium He, exhibits the same scaling 
behaviour for all three geometries and for both good and 0 solvents. This is because the 
stretching of the brush is due to the osmotic pressure of the counterions, 7t z k T(I$)/m, 
rather than to monomer-monomer interactions. In turn, the osmotic force per chain is 
roughly f,,, z nZHd-'/Rd-' and since ( I $ )  x (Rd-'/C)Na3/Hd, it scales as f,, x k 
TN/H for all the situations noted above. Balancing f,, against the elastic restoring 
force per chain f,, x k THINU' yields the equilibrium value of H as listed above. 

The behaviour of polyelectrolyte mesogels reduces to that of neutral mesogels when 
m is increased, i.e., for weakly charged mesogel. Such is also the case upon addition of 
salt. The rough characteristics of polyelectrolyte mesogels are rather similar to those of 
neutral mesogels as listed at the conclusion of section 111. However, the collapse of a 
polyelectrolyte mesogel takes place as a first-order phase transition. Finally, the 
stretching behaviour of such mesogels in poor solvent has not yet been studied. 

V. LIQUID CRYSTALLINE MESOGELS 

Liquid crystalline mesogels are predicted to exhibit a number of novel features 
involving electromechanical, electro-optic and mechano-optic effects.g910 The simplest 
system of this type is a lamellar mesogel with main chain LCP B blocks which is swollen 
by a nematic solvent. Another essential ingredient is the proper choice of the A blocks 
so that the glassy A domains impose a perpendicular orientation on the nematic 
director, n, at the interface (so called homeotropic an~horing.~')  Our discussion of this 
system is entirely qualitative, focusing on the simplified elementary unit of the mesogel, 
i.e., a doubly-anchored nematic brush consisting solely of bridging LCPs (q  = 1). This 
brush is swollen by a 6' nematic solvent chemically identical to the mesogenic 
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ON BRIDGING AND MESOGELS 11 

monomers incorporated into the backbone of the LCP. In this case, repulsive mono- 
mer-monomer interactions do not play a role and the LCPs retain, essentially, their 
melt configurations. The swelling of the mesogel is due to repulsive ternary interactions 
between the monomers. Due to the imposed anchoring conditions, the spacing between 
the A layers is equal to R,,o of a LCP in a 6 nematic solvent. The swelling behaviour of 
the mesogel is not very distinctive. The novelty is in the response of the system to shear 
and to electric fields. 

To appreciate these features, it is helpful to summarise the behaviour of a monomeric 
nematic in a slit imposing homeotropic anchoring.33 Two features are of interest: (1) 
Monomeric nematics respond to shear as simple fluids in the sense that there is no 
elastic response, ie., the shear modulus is zero. The so-called Franck elasticity of the 
nematics is due to the distortion of the director field and does not respond to strains. 
Thus, qausi-static shear of the two plates causes no nematic distortion even though fast 
displacement does. (2) A nematic can be aligned by an electric field because of its electric 
anisotropy, A E .  If A &  > 0 the nematic director tends to align with the field. When such a 
nematic is confined to a slit imposing homeotropic anchoring and subjected to a field, 
E ,  parallel to the confining plates, a Freedericksz transition takes place: There is no 
distortion of the director field while E < E,  = (n/H)(k/AE)”’ where k is the relevant 
nematic elastic constant. In this regime, the effect of the anchoring is dominant 
throughout the slit and the director field is perpendicular to the plates. When E >> E,  the 
nematic at the interface still obeys the anchoring conditions but n at intermediate 
orientations is aligned with the field. The onset of the nematic distortion, at E = E,, has 
the features of a second-order phase transition named after Frkedericksz. For the 
reasons listed in (1) above, the transition is not associated with strain or stress of the two 
confining plates. 

Both (1) and (2) are modified in our system because the two plates are now bridged by 
LCP which are, in turn, coupled to the director field of the nematic solvent. In 
particular: (i) Shear strain of the two plates now causes a nematic distortion since it 
induces a tilt of the bridging LCP. The onset of this distortion is continuous and no 
phase transition is involved. Remarkably, at certain regimes the shear modulus is 
dominated by the Franck elasticity of the nematic solvent. (ii) The onset of the 
Freedericksz transition is shifted to higher fields because of the effect of the elasticity of 
the bridging chains. (iii) The Freedericksz transition now gives rise to shear strain of the 
confining plates because of the LPC-mediated coupling to the nematic distortion. (iv) 
The shear modulus of the brush vanishes as E approaches E, from below because of the 
diverging susceptibility of a system undergoing a second order phase transition. 

VI. OLD EXPERIMENTS AND NEW SIMULATIONS 

Polycrystaliine, multi-domain mesogels were observed in the mid 1960s by Skoulious 
et al.34 and by Franta et al.35 ABA triblock copolymers in a selective solvent formed 
birefringent physical gels. The cross-linking involved crystalline A domains. The nature 
of the mesogel, be it lamellar, cylindrical or micellar, was determined by the concentra- 
tion of the copolymer. However, apart from their birefringence, these systems are 
essentially isotropic because of their polycrystalinity. Monocrystalline, aligned me- 
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12 A. HALPERIN 

sogels were observed in the mid 1970s by Folkes et al l4  These experiments pioneered 
the procedure described in the Introduction, i.e., shear alignment of an ABA melt in the 
appropriate mesophase followed by quenching to below T,(A) and swelling with a 
selective solvent. Anisotropic swelling was observed for lamellar and cylindrical 
mesogels. However, extensive swelling caused breakage of the glassy A domains. 
Beyond this point the gels lost their mesomorphic character and behaved as isotropic 
gels. Regrettably, this seminal study focused mainly on the shear alignment of the 
mesophase and overlooked the relationship to the polymer physics of networks. 

Simulations of bridging of two surfaces by telechelic chains were recently carried out 
by Misra et u1.36*37 These simulations are, however, concerned with dilute systems and 
low adsorption energies, for which the relaxation times are short. Hopefully, these 
studies will be extended in the future to the regimes of direct relevance to the 
mesonetwork/mesogel problem, i.e., high densities and high adsorption energies. 
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